Compito A
4.
a)

$$
\begin{aligned}
& \frac{1}{2} M V^{2}=\frac{1}{2} M V_{0}^{2}-M g h \\
& V^{2}=V_{0}^{2}-2 g h=75^{2}-2 \cdot 9.8 \cdot 285.15=5625-5588,94=36,06 \\
& V=6.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\vec{v}_{2}=\vec{v}_{1} \wedge \hat{k}=\operatorname{det}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 2 & 0 \\
0 & 0 & 1
\end{array}\right|=2 \cdot \hat{i}-3 \cdot \hat{j}+0 \cdot \hat{k}=2 \hat{i}-3 \hat{j}
$$

b)

$$
\begin{aligned}
& M \vec{V}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3} \\
& \left\{\begin{array}{l}
4 \cdot 3+2 \cdot 2+4 \cdot v_{3 x}=M V_{x}=10 \cdot 0=0 \\
4 \cdot 2+2 \cdot(-3)+4 \cdot v_{3 y}=M V_{y}=10 \cdot 0=0 \\
4 \cdot 0+2 \cdot 0+4 \cdot v_{3 z}=M V_{z}=10 \cdot 6=60
\end{array}\right. \\
& v_{3 x}=-\frac{16}{4}=-4 \\
& v_{3 y}=-\frac{1}{2} \\
& v_{3 z}=\frac{60}{4}=15
\end{aligned}
$$

Compito A

5.

$$
\begin{aligned}
& \vec{F}(x, y, z)=-\alpha\left[3 x^{2} z \hat{i}+4 y z^{2} \hat{j}+\left(x^{3}+4 y^{2} z\right) \hat{k}\right] \\
& \frac{\partial F_{x}}{\partial y}=0 \quad \frac{\partial F_{y}}{\partial x}=0 \\
& \frac{\partial F_{x}}{\partial z}=3 x^{2} \quad \frac{\partial F_{z}}{\partial x}=3 x^{2} \\
& \frac{\partial F_{y}}{\partial z}=8 y z \quad \frac{\partial F_{z}}{\partial y}=8 y z \\
& U(x, y, z)=-\alpha\left(x^{3} z+2 y^{2} z^{2}\right) \\
& U(0,0,0)=-\alpha \cdot 0=0 J \\
& U(A)=U(5,0,5)=-2 \cdot 625=-1250 J \\
& L_{O A}=U(A)-U(O)=-1250 J
\end{aligned}
$$

Compito A

6.

$$
\vec{K}_{\text {palla }}=\vec{d} \wedge \vec{p}=\vec{d} \wedge m \vec{v}=0.60 \cdot 2 \cdot 7=8.4 \mathrm{kgm}^{2} \mathrm{~s}^{-1}
$$

b)

$$
\begin{aligned}
& \vec{K}_{\text {palla }}=\vec{K}_{\text {piatatafrrma }+ \text { persona }} \\
& \vec{K}_{\text {piatutafrrma+ persona }}=8.4 \mathrm{kgm}^{2} \mathrm{~s}^{-1}=I \omega \\
& I=\frac{1}{2} M R^{2}+m_{\text {persona }} d^{2}=\frac{1}{2} 200+80 \cdot 0.36=100+28.8=128.8 \mathrm{kgm}^{2} \\
& \omega=\frac{8.4}{128.8}=0.0652 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Compito A

7.

$$
\begin{aligned}
& 0=m_{t} v_{t}-m_{r} v_{0 x} \\
& v_{t}=\frac{m_{r}}{m_{t}} v_{r} \\
& -\frac{1}{2} g t^{2}+v_{0 y} t=0 \\
& t_{1}=0 \\
& -\frac{1}{2} g t+v_{0 y}=0 \\
& t_{2}=\frac{2 v_{0 y}}{g} \\
& x_{r}=v_{0 x} t_{2}=\frac{2 v_{0 x} v_{0 y}}{g} \\
& x_{t}=v_{t} t_{2}=\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g} \\
& x_{r}+x_{t}=l \\
& l=\frac{2 v_{0 x} v_{0 y}}{g}+\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g}=\frac{2}{g} v_{0}^{2} \sin 15^{\circ} \cos 15^{\circ}\left(1+\frac{m_{r}}{m_{t}}\right) \\
& v_{0}^{2}=\frac{g l}{2 \sin 15^{\circ} \cos 15^{\circ}} \frac{m_{t}}{m_{t}+m_{r}}=\frac{9.8 \cdot 2}{2 \cdot 0.25} \frac{4}{4.1}=38.24 \\
& v_{0}=6.18 m s^{-1}
\end{aligned}
$$

Compito B

4.

a)

$$
\begin{aligned}
& \vec{v}_{3}=\vec{v}_{1} \wedge \hat{i}=\operatorname{det}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & 0 \\
1 & 0 & 0
\end{array}\right|=0 \cdot \hat{i}-0 \cdot \hat{j}+(-3) \hat{k}=-3 \hat{k}
\end{aligned} \begin{aligned}
& M \vec{V}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3} \\
& \left\{\begin{array}{l}
3 \cdot 1+5 \cdot v_{2 x}+4 \cdot 0=M V_{x}=12 \cdot 3=36 \\
3 \cdot 3+5 \cdot v_{2 y}+4 \cdot 0=M V_{y}=12 \cdot(-2)=-24 \\
3 \cdot 0+5 \cdot v_{2 z}-4 \cdot 3=M V_{z}=12 \cdot 4=48
\end{array}\right. \\
& v_{2 x}=\frac{33}{5} \\
& v_{2 y}=-\frac{33}{5} \\
& v_{2 z}=12
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{1}{2} M V^{2}=M g h \\
& h=\frac{V^{2}}{2 g}=\frac{16}{2 \cdot 9.8}=0.82 \mathrm{~m}
\end{aligned}
$$

Compito B

5.

$$
\begin{aligned}
& \vec{F}(x, y, z)=-\alpha\left[3 x^{2} y \hat{i}+\left(x^{3}+4 y z^{2}\right) \hat{j}+4 y^{2} z \hat{k}\right] N \\
& \frac{\partial F_{x}}{\partial y}=3 x^{2} \quad \frac{\partial F_{y}}{\partial x}=3 x^{2} \\
& \frac{\partial F_{x}}{\partial z}=0 \quad \frac{\partial F_{z}}{\partial x}=0 \\
& \frac{\partial F_{y}}{\partial z}=8 y z \quad \frac{\partial F_{z}}{\partial y}=8 y z \\
& U(x, y, z)=-\alpha\left(x^{3} y+2 y^{2} z^{2}\right) \\
& U(0,0,0)=-\alpha \cdot 0=0 J \\
& U(5,0,5)=-\alpha \cdot 0=0 J \\
& L_{O A}=U(A)-U(O)=0 J
\end{aligned}
$$

Compito B

a)

$$
\vec{K}_{\text {palla }}=\vec{d} \wedge \vec{p}=\vec{d} \wedge m \vec{v}=0.80 \cdot 1 \cdot 9 \cdot \frac{\sqrt{2}}{2}=3.6 \sqrt{2} \mathrm{kgm}^{2} \mathrm{~s}^{-1}=5,09 \mathrm{kgm}^{2} \mathrm{~s}^{-1}
$$

b)

$$
\begin{aligned}
& \vec{K}_{\text {palla }}=\vec{K}_{\text {piatufarmat }+ \text { palla }+ \text { persona }} \\
& \vec{K}_{\text {piatuaforma+ palla }+ \text { persona }}=5,09 \mathrm{kgm}^{2} \mathrm{~s}^{-1}=I \omega \\
& I=\frac{1}{2} M R^{2}+m_{\text {persona }+ \text { palla }} d^{2}=\frac{1}{2} 250 \cdot 4+76 \cdot 0.64=500+48.64=548.64 \mathrm{kgm}^{2} \\
& \omega=\frac{5,09}{548.64}=0.00928 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Compito B

7.

$$
\begin{aligned}
& 0=m_{t} v_{t}-m_{r} v_{0 x} \\
& v_{t}=\frac{m_{r}}{m_{t}} v_{r} \\
& -\frac{1}{2} g t^{2}+v_{0 y} t=0 \\
& t_{1}=0 \\
& -\frac{1}{2} g t+v_{0 y}=0 \\
& t_{2}=\frac{2 v_{0 y}}{g} \\
& x_{r}=v_{0 x} t_{2}=\frac{2 v_{0 x} v_{0 y}}{g} \\
& x_{t}=v_{t} t_{2}=\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g} \\
& x_{r}+x_{t}=l \\
& l=\frac{2 v_{0 x} v_{0 y}}{g}+\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g}=\frac{2}{g} v_{0}^{2} \sin 15^{\circ} \cos 15^{\circ}\left(1+\frac{m_{r}}{m_{t}}\right) \\
& l=\frac{2}{9.8}(2.5)^{2} \sin 15^{\circ} \cos 15^{\circ}\left(1+\frac{0.2}{3}\right)=\frac{2}{9.8} 6.25 \cdot 0.25 \frac{3.2}{3}=0.34 m
\end{aligned}
$$

Compito C

4.

a)

$$
\begin{aligned}
& \vec{v}_{1}=\vec{v}_{2} \wedge \hat{i}=\operatorname{det}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-4 & 6 & 12 \\
1 & 0 & 0
\end{array}\right|=0 \cdot \hat{i}-(-12) \hat{j}+(-6) \hat{k}=12 \hat{j}-6 \hat{k} \\
& M \vec{V}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3} \\
& \begin{array}{l}
4 \cdot 0+2 \cdot(-4)+5 \cdot v_{3 x}=M V_{x}=11 \cdot 2=22 \\
4 \cdot 12+2 \cdot 6+5 \cdot v_{3 y}=M V_{y}=11 \cdot 3=33 \\
4 \cdot(-6)+2 \cdot 12+5 \cdot v_{3 z}=M V_{z}=11 \cdot 6=66
\end{array} \\
& v_{3 x}=6 \\
& v_{3 y}=\frac{33-60}{5}=-\frac{27}{5} \\
& v_{3 z}=\frac{66+24-24}{5}=\frac{66}{5}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{1}{2} M V^{2}=M g h \\
& h=\frac{V^{2}}{2 g}=\frac{36}{2 \cdot 9.8}=1.84 \mathrm{~m}
\end{aligned}
$$

Compito C

5.

$$
\begin{aligned}
& \vec{F}(x, y, z)=-\alpha\left[\left(y^{3}+4 x z^{2}\right) \hat{i}+3 x y^{2} \hat{j}+4 x^{2} z \hat{k}\right] N \\
& \frac{\partial F_{x}}{\partial y}=3 y^{2} \quad \frac{\partial F_{y}}{\partial x}=3 y^{2} \\
& \frac{\partial F_{x}}{\partial z}=8 x z \quad \frac{\partial F_{z}}{\partial x}=8 x z \\
& \frac{\partial F_{y}}{\partial z}=0 \quad \frac{\partial F_{z}}{\partial y}=0 \\
& U(x, y, z)=-\alpha\left(y^{3} x+2 x^{2} z^{2}\right) \\
& U(0,0,0)=-\alpha \cdot 0=0 J \\
& U(A)=U(4,0,4)=-3(2 \cdot 16 \cdot 16) J=-3 \cdot 512 J=-1536 J \\
& L_{O A}=U(A)-U(O)=-1536 J
\end{aligned}
$$

Compito C

a)

$$
\vec{K}_{\text {palla }}=\vec{d} \wedge \vec{p}=\vec{d} \wedge m \vec{v}=0.60 \cdot \downarrow \cdot 7 \cdot \frac{\sqrt{3}}{2}=4.2 \sqrt{3} \mathrm{kgm}^{2} \mathrm{~s}^{-1}=7,27 \mathrm{kgm}^{2} \mathrm{~s}^{-1}
$$

b)
b)
$\vec{K}_{\text {palla }}=\vec{K}_{\text {piatufafrrma }+ \text { palla }+ \text { persona }}$
$\vec{K}_{\text {piataforma }+ \text { palla }+ \text { persona }}=7,27 \mathrm{kgm}^{2} \mathrm{~s}^{-1}=I \omega$
$I=\frac{1}{2} M R^{2}+m_{\text {persona }+ \text { palla }} d^{2}=\frac{1}{2} 200+82 \cdot 0.36=100+29.52=129.52 \mathrm{kgm}^{2}$
$\omega=\frac{7,27}{129.52}=0.0562 \mathrm{rad} / \mathrm{s}$

Compito C

7.

$$
\begin{aligned}
& 0=m_{t} v_{t}-m_{r} v_{0 x} \\
& v_{t}=\frac{m_{r}}{m_{t}} v_{r} \\
& -\frac{1}{2} g t^{2}+v_{0 y} t=0 \\
& t_{1}=0 \\
& -\frac{1}{2} g t+v_{0 y}=0 \\
& t_{2}=\frac{2 v_{0 y}}{g} \\
& x_{r}=v_{0 x} t_{2}=\frac{2 v_{0 x} v_{0 y}}{g} \\
& x_{t}=v_{t} t_{2}=\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g} \\
& x_{r}+x_{t}=l \\
& l=\frac{2 v_{0 x} v_{0 y}}{g}+\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g}=\frac{2}{g} v_{0}^{2} \sin 30^{\circ} \cos 30^{\circ}\left(1+\frac{m_{r}}{m_{t}}\right) \\
& l=\frac{2}{9.8} 2^{2} \sin 30^{\circ} \cos 30^{\circ}\left(1+\frac{0.15}{4}\right)=\frac{2}{9.8} 4 \frac{\sqrt{3}}{4} \frac{4.15}{4}=0.367 m
\end{aligned}
$$

Compito D
4.
a)

$$
\begin{aligned}
& \frac{1}{2} M V_{0}^{2}=\frac{1}{2} M V^{2}+M g h \\
& V^{2}=V_{0}^{2}-2 g h=83^{2}-2 \cdot 9.8 \cdot 292.75=6889-5737.9=1151.1 \\
& V=33.93 m s^{-1}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \vec{v}_{3}=\vec{v}_{2} \wedge \hat{j}=\operatorname{det}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & -3 & 4 \\
0 & 1 & 0
\end{array}\right|=-4 \hat{i}-0 \cdot \hat{j}+0 \cdot \hat{k}=-4 \hat{i} \\
& M \vec{V}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}
\end{aligned} \begin{aligned}
& 5 \cdot v_{1 x}+4 \cdot 0+3 \cdot(-4)=M V_{x}=12 \cdot 0=0 \\
& 5 \cdot v_{1 y}+4 \cdot(-3)+3 \cdot 0=M V_{y}=12 \cdot 0=0 \\
& 5 \cdot v_{1 z}+4 \cdot 4-3 \cdot 0=M V_{z}=12 \cdot 33.93=407.16
\end{aligned} \begin{aligned}
& v_{1 x}=\frac{12}{5} \\
& v_{1 y}=\frac{12}{5} \\
& v_{1 z}=\frac{391.16}{5}
\end{aligned}
$$

Compito D

5.

$$
\begin{aligned}
& \vec{F}(x, y, z)=-\alpha\left[4 x z^{2} \hat{i}+3 y^{2} \hat{z} \hat{j}+\left(y^{3}+4 x^{2} z\right) \hat{k}\right] N \\
& \frac{\partial F_{x}}{\partial y}=0 \quad \frac{\partial F_{y}}{\partial x}=0 \\
& \frac{\partial F_{x}}{\partial z}=8 x z \quad \frac{\partial F_{z}}{\partial x}=8 x z \\
& \frac{\partial F_{y}}{\partial z}=3 y^{2} \quad \frac{\partial F_{z}}{\partial y}=3 y^{2} \\
& U(x, y, z)=-\alpha\left(2 x^{2} z^{2}+y^{3} z\right) \\
& U(0,0,0)=-\alpha \cdot 0=0 J \\
& U(A)=U(6,0,6)=-(-1)(2 \cdot 36 \cdot 36) J=2 \cdot 1296 J=2592 J \\
& L_{O A}=U(A)-U(O)=2592 J
\end{aligned}
$$

Compito D

6.

$$
\vec{K}_{\text {palla }}=\vec{d} \wedge \vec{p}=\vec{d} \wedge m \vec{v}=1.2 \cdot 1 \cdot 10 \cdot \frac{1}{\underline{Z}}=6 \mathrm{kgm}^{2} \mathrm{~s}^{-1}
$$

b)

$$
\begin{aligned}
& \vec{K}_{\text {palla }}=\vec{K}_{\text {piattaforma+ personan }} \\
& \vec{K}_{\text {piatafaforma+ persona }}=6 \mathrm{kgm}^{2} \mathrm{~s}^{-1}=I \omega \\
& I=\frac{1}{2} M R^{2}+m_{\text {persona }} d^{2}=\frac{1}{2} 250(1.5)^{2}+85 \cdot 1.44=125 \cdot 2.25+122.4=403.65 \mathrm{kgm}^{2} \\
& \omega=\frac{6}{403.65}=0.0149 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Compito D

7.

$0=m_{t} v_{t}-m_{r} v_{0 x}$
$v_{t}=\frac{m_{r}}{m_{t}} v_{r}$
$-\frac{1}{2} g t^{2}+v_{0 y} t=0$
$t_{1}=0$
$-\frac{1}{2} g t+v_{0 y}=0$
$t_{2}=\frac{2 v_{0 y}}{g}$
$x_{r}=v_{0 x} t_{2}=\frac{2 v_{0 x} v_{0 y}}{g}$
$x_{t}=v_{t} t_{2}=\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g}$
$x_{r}+x_{t}=l$
$l=\frac{2 v_{0 x} v_{0 y}}{g}+\frac{m_{r}}{m_{t}} \frac{2 v_{0 x} v_{0 y}}{g}=\frac{2}{g} v_{0}^{2} \sin 15^{\circ} \cos 15^{\circ}\left(1+\frac{m_{r}}{m_{t}}\right)$
$v_{0}^{2}=\frac{g l}{2 \sin 45^{\circ} \cos 45^{\circ}} \frac{m_{t}}{m_{t}+m_{r}}=\frac{9.8 \cdot 2.5}{2 \cdot 0.5} \frac{3}{3.2}=22.97$
$v_{0}=4,79 \mathrm{~ms}^{-1}$

